NeuroConn.gradient package¶
Submodules¶
NeuroConn.gradient.gradient module¶
- NeuroConn.gradient.gradient.align_gradients(gradients, n_components, custom_ref=None, *args)[source]¶
Aligns gradients to a reference set of gradients using Procrustes alignment.
- Parameters:
gradients (str or numpy.ndarray) – The gradients to align.
n_components (int) – The number of components to use from the reference gradients.
custom_ref (str or numpy.ndarray, optional) – The reference gradients to align to. If None, the default Margulies et al. (2016) gradients will be used. Default is None.
*args – Additional arguments to pass to ProcrustesAlignment.
- Returns:
The aligned gradients.
- Return type:
numpy.ndarray
- NeuroConn.gradient.gradient.get_gradients(data, subject, n_components, task, parcellation='schaefer', n_parcels=1000, kernel='cosine', approach='pca', from_mat=True, aligned=True, save=True, save_to=None)[source]¶
Computes gradients from the subject connectivity matrix.
- Parameters:
data (str or FmriPreppedDataSet) – The path to the data or the FmriPreppedDataSet object.
subject (str) – The subject ID.
n_components (int) – The number of components to extract.
task (str, optional) – The task name. Default is ‘rest’.
parcellation (str, optional) – The parcellation name. Default is ‘schaefer’.
n_parcels (int, optional) – The number of parcels. Default is 1000.
kernel (str, optional) – The kernel to use. Default is ‘cosine’.
approach (str, optional) – The approach to use. Default is ‘pca’.
from_mat (bool, optional) – Whether to load the data from a .mat file. Default is True.
aligned (bool, optional) – Whether to align the gradients to the Margulies et al. (2016) gradients. Default is True.
save (bool, optional) – Whether to save the gradients. Default is True.
save_to (str, optional) – The path to save the gradients. Default is None.
- Returns:
The computed gradients.
- Return type:
numpy.ndarray